1 load libraries and read in data

Code
library(vcfR)

   *****       ***   vcfR   ***       *****
   This is vcfR 1.14.0 
     browseVignettes('vcfR') # Documentation
     citation('vcfR') # Citation
   *****       *****      *****       *****
Code
library(SNPfiltR)
This is SNPfiltR v.1.0.2

Detailed usage information is available at: devonderaad.github.io/SNPfiltR/ 

If you use SNPfiltR in your published work, please cite the following papers: 

DeRaad, D.A. (2022), SNPfiltR: an R package for interactive and reproducible SNP filtering. Molecular Ecology Resources, 22, 2443-2453. http://doi.org/10.1111/1755-0998.13618 

Knaus, Brian J., and Niklaus J. Grunwald. 2017. VCFR: a package to manipulate and visualize variant call format data in R. Molecular Ecology Resources, 17.1:44-53. http://doi.org/10.1111/1755-0998.12549
Code
library(StAMPP)
Loading required package: pegas
Loading required package: ape

Attaching package: 'pegas'
The following object is masked from 'package:ape':

    mst
The following objects are masked from 'package:vcfR':

    getINFO, write.vcf
Registered S3 method overwritten by 'ade4':
  method      from 
  print.amova pegas
Code
library(adegenet)
Loading required package: ade4

Attaching package: 'ade4'
The following object is masked from 'package:pegas':

    amova

   /// adegenet 2.1.10 is loaded ////////////

   > overview: '?adegenet'
   > tutorials/doc/questions: 'adegenetWeb()' 
   > bug reports/feature requests: adegenetIssues()
Code
library(ggplot2)

#read in file
v<-read.vcfR("~/Desktop/grosbeak.rad/grosbeak.filtered.snps.vcf.gz")

2 make splitstree

Code
#get info for this dataset
v
***** Object of Class vcfR *****
138 samples
1027 CHROMs
51,595 variants
Object size: 532.6 Mb
2.987 percent missing data
*****        *****         *****
Code
#convert to genlight
gen<-vcfR2genlight(v)
#fix sample names to fit in <= 10 characters
gen@ind.names
  [1] "P_hybrid_44696"         "P_hybrid_44703"         "P_hybrid_44707"        
  [4] "P_hybrid_44708"         "P_hybrid_44709"         "P_hybrid_44712"        
  [7] "P_hybrid_44762"         "P_hybrid_44771"         "P_hybrid_44781"        
 [10] "P_hybrid_45171"         "P_hybrid_45173"         "P_hybrid_45174"        
 [13] "P_ludovicianus_11998"   "P_ludovicianus_21721"   "P_ludovicianus_25286"  
 [16] "P_ludovicianus_26595"   "P_ludovicianus_33988"   "P_ludovicianus_34776"  
 [19] "P_ludovicianus_34779"   "P_ludovicianus_34782"   "P_ludovicianus_34830"  
 [22] "P_ludovicianus_44704"   "P_ludovicianus_44705"   "P_ludovicianus_44706"  
 [25] "P_ludovicianus_44710"   "P_ludovicianus_44711"   "P_ludovicianus_44713"  
 [28] "P_ludovicianus_44714"   "P_ludovicianus_44715"   "P_ludovicianus_44716"  
 [31] "P_ludovicianus_44719"   "P_ludovicianus_44720"   "P_ludovicianus_44722"  
 [34] "P_ludovicianus_44723"   "P_ludovicianus_44726"   "P_ludovicianus_44727"  
 [37] "P_ludovicianus_44729"   "P_ludovicianus_44730"   "P_ludovicianus_44731"  
 [40] "P_ludovicianus_44732"   "P_ludovicianus_44733"   "P_ludovicianus_44734"  
 [43] "P_ludovicianus_44737"   "P_ludovicianus_44738"   "P_ludovicianus_44739"  
 [46] "P_ludovicianus_44740"   "P_ludovicianus_44741"   "P_ludovicianus_44742"  
 [49] "P_ludovicianus_44743"   "P_ludovicianus_44744"   "P_ludovicianus_44745"  
 [52] "P_ludovicianus_44746"   "P_ludovicianus_44747"   "P_ludovicianus_44748"  
 [55] "P_ludovicianus_44749"   "P_ludovicianus_44753"   "P_ludovicianus_44754"  
 [58] "P_ludovicianus_44761"   "P_ludovicianus_44775"   "P_melanocephalus_34890"
 [61] "P_melanocephalus_43110" "P_melanocephalus_43276" "P_melanocephalus_44346"
 [64] "P_melanocephalus_44347" "P_melanocephalus_44471" "P_melanocephalus_44651"
 [67] "P_melanocephalus_44660" "P_melanocephalus_44666" "P_melanocephalus_44676"
 [70] "P_melanocephalus_44677" "P_melanocephalus_44678" "P_melanocephalus_44679"
 [73] "P_melanocephalus_44680" "P_melanocephalus_44681" "P_melanocephalus_44683"
 [76] "P_melanocephalus_44684" "P_melanocephalus_44685" "P_melanocephalus_44686"
 [79] "P_melanocephalus_44687" "P_melanocephalus_44688" "P_melanocephalus_44689"
 [82] "P_melanocephalus_44692" "P_melanocephalus_44693" "P_melanocephalus_44694"
 [85] "P_melanocephalus_44695" "P_melanocephalus_44697" "P_melanocephalus_44699"
 [88] "P_melanocephalus_44752" "P_melanocephalus_44760" "P_melanocephalus_44763"
 [91] "P_melanocephalus_44764" "P_melanocephalus_44765" "P_melanocephalus_44766"
 [94] "P_melanocephalus_44769" "P_melanocephalus_44770" "P_melanocephalus_44772"
 [97] "P_melanocephalus_44773" "P_melanocephalus_44774" "P_melanocephalus_44776"
[100] "P_melanocephalus_44777" "P_melanocephalus_44778" "P_melanocephalus_44779"
[103] "P_melanocephalus_44780" "P_melanocephalus_44782" "P_melanocephalus_44787"
[106] "P_melanocephalus_44788" "P_melanocephalus_44789" "P_melanocephalus_44790"
[109] "P_melanocephalus_44791" "P_melanocephalus_44792" "P_melanocephalus_44793"
[112] "P_melanocephalus_44794" "P_melanocephalus_44795" "P_melanocephalus_44798"
[115] "P_melanocephalus_44799" "P_melanocephalus_44801" "P_melanocephalus_44802"
[118] "P_melanocephalus_44803" "P_melanocephalus_44804" "P_melanocephalus_44805"
[121] "P_melanocephalus_44806" "P_melanocephalus_44808" "P_melanocephalus_44809"
[124] "P_melanocephalus_44810" "P_melanocephalus_44837" "P_melanocephalus_44840"
[127] "P_melanocephalus_44843" "P_melanocephalus_44845" "P_melanocephalus_44846"
[130] "P_melanocephalus_44847" "P_melanocephalus_44848" "P_melanocephalus_44853"
[133] "P_melanocephalus_44854" "P_melanocephalus_45175" "P_melanocephalus_45200"
[136] "P_melanocephalus_45232" "P_melanocephalus_45709" "P_melanocephalus_45926"
Code
gen@ind.names<-gsub("P_hybrid_","hyb", gen@ind.names)
gen@ind.names<-gsub("P_ludovicianus_","lud", gen@ind.names)
gen@ind.names<-gsub("P_melanocephalus_","mel", gen@ind.names)
gen@ind.names
  [1] "hyb44696" "hyb44703" "hyb44707" "hyb44708" "hyb44709" "hyb44712"
  [7] "hyb44762" "hyb44771" "hyb44781" "hyb45171" "hyb45173" "hyb45174"
 [13] "lud11998" "lud21721" "lud25286" "lud26595" "lud33988" "lud34776"
 [19] "lud34779" "lud34782" "lud34830" "lud44704" "lud44705" "lud44706"
 [25] "lud44710" "lud44711" "lud44713" "lud44714" "lud44715" "lud44716"
 [31] "lud44719" "lud44720" "lud44722" "lud44723" "lud44726" "lud44727"
 [37] "lud44729" "lud44730" "lud44731" "lud44732" "lud44733" "lud44734"
 [43] "lud44737" "lud44738" "lud44739" "lud44740" "lud44741" "lud44742"
 [49] "lud44743" "lud44744" "lud44745" "lud44746" "lud44747" "lud44748"
 [55] "lud44749" "lud44753" "lud44754" "lud44761" "lud44775" "mel34890"
 [61] "mel43110" "mel43276" "mel44346" "mel44347" "mel44471" "mel44651"
 [67] "mel44660" "mel44666" "mel44676" "mel44677" "mel44678" "mel44679"
 [73] "mel44680" "mel44681" "mel44683" "mel44684" "mel44685" "mel44686"
 [79] "mel44687" "mel44688" "mel44689" "mel44692" "mel44693" "mel44694"
 [85] "mel44695" "mel44697" "mel44699" "mel44752" "mel44760" "mel44763"
 [91] "mel44764" "mel44765" "mel44766" "mel44769" "mel44770" "mel44772"
 [97] "mel44773" "mel44774" "mel44776" "mel44777" "mel44778" "mel44779"
[103] "mel44780" "mel44782" "mel44787" "mel44788" "mel44789" "mel44790"
[109] "mel44791" "mel44792" "mel44793" "mel44794" "mel44795" "mel44798"
[115] "mel44799" "mel44801" "mel44802" "mel44803" "mel44804" "mel44805"
[121] "mel44806" "mel44808" "mel44809" "mel44810" "mel44837" "mel44840"
[127] "mel44843" "mel44845" "mel44846" "mel44847" "mel44848" "mel44853"
[133] "mel44854" "mel45175" "mel45200" "mel45232" "mel45709" "mel45926"
Code
pop(gen)<-gen@ind.names
#assign populations (a StaMPP requirement)
gen@pop<-as.factor(gen@ind.names)
#generate pairwise divergence matrix
sample.div <- stamppNeisD(gen, pop = FALSE)
#export for splitstree
#stamppPhylip(distance.mat=sample.div, file="~/Desktop/grosbeak.rad/grosbeak.90.splits.txt")
knitr::include_graphics(c("/Users/devonderaad/Desktop/grosbeak.rad/90.splits.png"))

3 re-make splitstree with mito and locality info listed in each sample name

Code
#convert to genlight
gen<-vcfR2genlight(v)

#read in locality and mito info
samps<-read.csv("~/Desktop/grosbeak.data.csv")
samps<-samps[samps$passed.genomic.filtering == "TRUE",] #retain only samples that passed filtering
samps$sample_id == gen@ind.names #check if sample info table order matches the vcf
  [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [85] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
 [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[133] FALSE FALSE FALSE FALSE FALSE FALSE
Code
samps<-samps[match(gen@ind.names,samps$sample_id),] #use 'match' to match orders
samps$sample_id == gen@ind.names #check if this worked
  [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [16] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [31] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [46] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [61] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [76] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [91] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[106] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[121] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[136] TRUE TRUE TRUE
Code
#fix sample names to fit in <= 10 characters and have locality and mito info and still be unique
gen@ind.names
  [1] "P_hybrid_44696"         "P_hybrid_44703"         "P_hybrid_44707"        
  [4] "P_hybrid_44708"         "P_hybrid_44709"         "P_hybrid_44712"        
  [7] "P_hybrid_44762"         "P_hybrid_44771"         "P_hybrid_44781"        
 [10] "P_hybrid_45171"         "P_hybrid_45173"         "P_hybrid_45174"        
 [13] "P_ludovicianus_11998"   "P_ludovicianus_21721"   "P_ludovicianus_25286"  
 [16] "P_ludovicianus_26595"   "P_ludovicianus_33988"   "P_ludovicianus_34776"  
 [19] "P_ludovicianus_34779"   "P_ludovicianus_34782"   "P_ludovicianus_34830"  
 [22] "P_ludovicianus_44704"   "P_ludovicianus_44705"   "P_ludovicianus_44706"  
 [25] "P_ludovicianus_44710"   "P_ludovicianus_44711"   "P_ludovicianus_44713"  
 [28] "P_ludovicianus_44714"   "P_ludovicianus_44715"   "P_ludovicianus_44716"  
 [31] "P_ludovicianus_44719"   "P_ludovicianus_44720"   "P_ludovicianus_44722"  
 [34] "P_ludovicianus_44723"   "P_ludovicianus_44726"   "P_ludovicianus_44727"  
 [37] "P_ludovicianus_44729"   "P_ludovicianus_44730"   "P_ludovicianus_44731"  
 [40] "P_ludovicianus_44732"   "P_ludovicianus_44733"   "P_ludovicianus_44734"  
 [43] "P_ludovicianus_44737"   "P_ludovicianus_44738"   "P_ludovicianus_44739"  
 [46] "P_ludovicianus_44740"   "P_ludovicianus_44741"   "P_ludovicianus_44742"  
 [49] "P_ludovicianus_44743"   "P_ludovicianus_44744"   "P_ludovicianus_44745"  
 [52] "P_ludovicianus_44746"   "P_ludovicianus_44747"   "P_ludovicianus_44748"  
 [55] "P_ludovicianus_44749"   "P_ludovicianus_44753"   "P_ludovicianus_44754"  
 [58] "P_ludovicianus_44761"   "P_ludovicianus_44775"   "P_melanocephalus_34890"
 [61] "P_melanocephalus_43110" "P_melanocephalus_43276" "P_melanocephalus_44346"
 [64] "P_melanocephalus_44347" "P_melanocephalus_44471" "P_melanocephalus_44651"
 [67] "P_melanocephalus_44660" "P_melanocephalus_44666" "P_melanocephalus_44676"
 [70] "P_melanocephalus_44677" "P_melanocephalus_44678" "P_melanocephalus_44679"
 [73] "P_melanocephalus_44680" "P_melanocephalus_44681" "P_melanocephalus_44683"
 [76] "P_melanocephalus_44684" "P_melanocephalus_44685" "P_melanocephalus_44686"
 [79] "P_melanocephalus_44687" "P_melanocephalus_44688" "P_melanocephalus_44689"
 [82] "P_melanocephalus_44692" "P_melanocephalus_44693" "P_melanocephalus_44694"
 [85] "P_melanocephalus_44695" "P_melanocephalus_44697" "P_melanocephalus_44699"
 [88] "P_melanocephalus_44752" "P_melanocephalus_44760" "P_melanocephalus_44763"
 [91] "P_melanocephalus_44764" "P_melanocephalus_44765" "P_melanocephalus_44766"
 [94] "P_melanocephalus_44769" "P_melanocephalus_44770" "P_melanocephalus_44772"
 [97] "P_melanocephalus_44773" "P_melanocephalus_44774" "P_melanocephalus_44776"
[100] "P_melanocephalus_44777" "P_melanocephalus_44778" "P_melanocephalus_44779"
[103] "P_melanocephalus_44780" "P_melanocephalus_44782" "P_melanocephalus_44787"
[106] "P_melanocephalus_44788" "P_melanocephalus_44789" "P_melanocephalus_44790"
[109] "P_melanocephalus_44791" "P_melanocephalus_44792" "P_melanocephalus_44793"
[112] "P_melanocephalus_44794" "P_melanocephalus_44795" "P_melanocephalus_44798"
[115] "P_melanocephalus_44799" "P_melanocephalus_44801" "P_melanocephalus_44802"
[118] "P_melanocephalus_44803" "P_melanocephalus_44804" "P_melanocephalus_44805"
[121] "P_melanocephalus_44806" "P_melanocephalus_44808" "P_melanocephalus_44809"
[124] "P_melanocephalus_44810" "P_melanocephalus_44837" "P_melanocephalus_44840"
[127] "P_melanocephalus_44843" "P_melanocephalus_44845" "P_melanocephalus_44846"
[130] "P_melanocephalus_44847" "P_melanocephalus_44848" "P_melanocephalus_44853"
[133] "P_melanocephalus_44854" "P_melanocephalus_45175" "P_melanocephalus_45200"
[136] "P_melanocephalus_45232" "P_melanocephalus_45709" "P_melanocephalus_45926"
Code
gen@ind.names<-gsub("P_hybrid_","", gen@ind.names)
gen@ind.names<-gsub("P_ludovicianus_","", gen@ind.names)
gen@ind.names<-gsub("P_melanocephalus_","", gen@ind.names)
gen@ind.names<-paste(samps$site,gen@ind.names,sep="_")
gen@ind.names<-paste(samps$mtDNA,gen@ind.names,sep="_")
gen@ind.names<-gsub("NA","N", gen@ind.names)
gen@ind.names
  [1] "1_7_44696"  "1_8_44703"  "0_9_44707"  "0_9_44708"  "0_10_44709"
  [6] "0_10_44712" "1_8_44762"  "0_7_44771"  "1_4_44781"  "0_9_45171" 
 [11] "1_8_45173"  "1_8_45174"  "N_12_11998" "N_12_21721" "N_12_25286"
 [16] "N_12_26595" "N_12_33988" "N_12_34776" "N_12_34779" "N_12_34782"
 [21] "N_12_34830" "0_9_44704"  "0_9_44705"  "0_9_44706"  "0_10_44710"
 [26] "0_10_44711" "0_10_44713" "0_10_44714" "0_10_44715" "0_10_44716"
 [31] "0_10_44719" "0_10_44720" "0_11_44722" "0_11_44723" "0_11_44726"
 [36] "0_11_44727" "0_11_44729" "0_11_44730" "0_11_44731" "0_11_44732"
 [41] "0_11_44733" "0_11_44734" "0_11_44737" "0_11_44738" "0_11_44739"
 [46] "0_11_44740" "0_11_44741" "0_11_44742" "0_11_44743" "0_11_44744"
 [51] "0_11_44745" "0_11_44746" "0_11_44747" "0_11_44748" "0_11_44749"
 [56] "0_9_44753"  "0_9_44754"  "0_8_44761"  "0_6_44775"  "N_0_34890" 
 [61] "N_0_43110"  "N_0_43276"  "N_0_44346"  "N_0_44347"  "N_0_44471" 
 [66] "1_1_44651"  "1_1_44660"  "1_1_44666"  "1_1_44676"  "1_1_44677" 
 [71] "1_1_44678"  "1_1_44679"  "1_1_44680"  "1_2_44681"  "1_2_44683" 
 [76] "1_2_44684"  "1_3_44685"  "1_3_44686"  "1_3_44687"  "N_3_44688" 
 [81] "1_3_44689"  "1_3_44692"  "1_7_44693"  "1_7_44694"  "1_7_44695" 
 [86] "1_3_44697"  "0_7_44699"  "1_9_44752"  "1_8_44760"  "1_8_44763" 
 [91] "1_8_44764"  "1_8_44765"  "1_7_44766"  "1_7_44769"  "1_7_44770" 
 [96] "1_6_44772"  "1_6_44773"  "1_6_44774"  "1_6_44776"  "1_6_44777" 
[101] "1_6_44778"  "1_6_44779"  "1_4_44780"  "1_4_44782"  "1_4_44787" 
[106] "1_4_44788"  "1_4_44789"  "1_4_44790"  "1_4_44791"  "1_4_44792" 
[111] "1_4_44793"  "1_5_44794"  "1_5_44795"  "1_5_44798"  "1_5_44799" 
[116] "1_3_44801"  "1_3_44802"  "1_3_44803"  "1_3_44804"  "1_3_44805" 
[121] "1_3_44806"  "1_3_44808"  "1_3_44809"  "1_3_44810"  "1_1_44837" 
[126] "1_1_44840"  "1_1_44843"  "1_1_44845"  "1_1_44846"  "1_1_44847" 
[131] "1_1_44848"  "1_1_44853"  "1_1_44854"  "0_8_45175"  "N_1_45200" 
[136] "N_1_45232"  "N_0_45709"  "N_0_45926" 
Code
#make splitstree with these updated labels
pop(gen)<-gen@ind.names
#assign populations (a StaMPP requirement)
gen@pop<-as.factor(gen@ind.names)
#generate pairwise divergence matrix
sample.div <- stamppNeisD(gen, pop = FALSE)
#export for splitstree
#stamppPhylip(distance.mat=sample.div, file="~/Desktop/grosbeak.rad/grosbeak.mito.site.splits.txt")

4 Calculate Fst between the ends of the transect

Code
#isolate only the parental ends of the transects
v.sub<-v[,c(TRUE,samps$site == 0 | samps$site == 12)]

#make sure this worked
v.sub
***** Object of Class vcfR *****
17 samples
1027 CHROMs
51,595 variants
Object size: 88.7 Mb
4.652 percent missing data
*****        *****         *****
Code
#convert vcfR to genlight
gen<-vcfR2genlight(v.sub)

#assign samples to the three groups shown above
gen@pop<-as.factor(samps$site[samps$site == 0 | samps$site == 12])

#calculate pairwise Fst using the stampp package
stamppFst(gen)
$Fsts
          12  0
12        NA NA
0  0.2645625 NA

$Pvalues
   12  0
12 NA NA
0   0 NA

$Bootstraps
  Population1 Population2         1         2         3        4         5
1          12           0 0.2561747 0.2566465 0.2568648 0.257093 0.2571133
          6         7         8         9        10        11        12
1 0.2575135 0.2575698 0.2582564 0.2583061 0.2585856 0.2590412 0.2592058
         13        14        15        16        17        18        19
1 0.2593906 0.2594297 0.2595366 0.2596307 0.2600616 0.2601231 0.2602669
         20       21        22        23        24        25        26
1 0.2603463 0.260751 0.2608085 0.2610855 0.2611586 0.2612449 0.2615212
         27        28       29        30        31        32        33
1 0.2615611 0.2617672 0.261838 0.2619738 0.2623034 0.2623384 0.2623739
         34        35        36        37        38       39        40
1 0.2624292 0.2627234 0.2628311 0.2629844 0.2631158 0.263171 0.2632158
         41        42        43        44      45        46        47        48
1 0.2632674 0.2633593 0.2638874 0.2639994 0.26403 0.2643012 0.2646035 0.2647292
        49        50        51        52       53        54        55        56
1 0.264749 0.2647505 0.2648023 0.2648905 0.264923 0.2650233 0.2650281 0.2650904
         57        58        59        60        61        62        63
1 0.2651383 0.2653112 0.2653884 0.2653981 0.2654016 0.2654573 0.2655118
         64        65        66        67        68        69        70
1 0.2656911 0.2657099 0.2657371 0.2657975 0.2658327 0.2658826 0.2659813
         71        72        73        74        75        76        77     78
1 0.2662962 0.2665905 0.2669185 0.2671655 0.2673417 0.2674317 0.2674506 0.2675
         79        80        81        82        83        84        85
1 0.2677126 0.2678304 0.2679945 0.2680013 0.2680437 0.2682795 0.2685612
         86        87        88        89       90        91        92
1 0.2691346 0.2692418 0.2695563 0.2697658 0.269781 0.2699176 0.2703587
         93        94        95        96        97        98        99
1 0.2705305 0.2705471 0.2715292 0.2719347 0.2721417 0.2729882 0.2735434
       100 Lower bound CI limit Upper bound CI limit p-value       Fst
1 0.275152            0.2568648            0.2721417       0 0.2645625